All Practice Problems

Problem # 699
 

Show how each compound can be prepared from the indicated starting material.

All carbon sources must contain three carbons or less.

Problem # 700
 

Write out a mechanism for the reaction below using curved arrows. Be sure to include formal charges. 

Problem # 701

The acid-catalyzed condensation of alcohols to form ethers is reversable; ethers can be hydrolyzed back to alcohols. How can the direction of this equilibrium be controlled to preferentially form ethers?

Problem # 702
 

Show how to prepare each compound starting from propylene oxide.

(Propylene oxide image below courtesy of Wikipedia.)

Problem # 703

Show two ways to prepare the ether below from a combination of an alcohol and an alkyl halide via the Williamson ether synthesis.

Is one way better than the other? Why?

Problem # 705

Carbonyls are in equilibrium with their hydrate forms. This equilibrium happens in both acid and base.

Let's go through this equilibrium under basic conditions. Draw a mechanism using curved arrows for each reaction below.

Remember that under basic conditions, most species are either neutral or negatively charged, and rarely positively charged. So your structures will contain either ROH or RO-, but not ROH2+.

 

a) Carbonyl to Hydrate

Notice that no oxygen is ever positive during these basic mechanisms (always negative or neutral).

b) Hydrate to Carbonyl

Problem # 706

Carbonyls are in equilibrium with their hydrate forms. This equilibrium happens in both acid and base.

Let's go through this equilibrium under acidic conditions. Draw a mechanism using curved arrows for each reaction below.

Remember that under acidic conditions, most species are either neutral or positively charged, and rarely negatively charged. So your structures will contain either ROH or ROH2+, but not RO-.

 

a) Carbonyl to Hydrate (acidic)

b) Hydrate to Carbonyl (acidic)

Problem # 707

The overall mechanism for imine formation is shown below. (This isn't a real mechanism, just an outline)

 

Use curved arrows to draw the full mechanism for imine formation under acidic conditions. (I've added outlines of the intermediate structures for you to use as a guide). This mechanism is similar to that in problem 706 (carbonyl hydrate equilibria).

Problem # 708

The overall mechanism for Fischer esterification is shown below. This isn't a real mechanism, just an outline.

Methanol (the nucleophile) attacks the carbonyl carbon, forming a tetrahedral intermediate, which then loses a water to reform the carbonyl. This mechanism is called nucleophilic acyl substitution.

 

Use curved arrows to draw a full mechanism for this reaction. I've included structures for you to use as a guide.

This reaction takes place under acidic conditions, so the mechanism you draw will be similar to those in problem 706.

Problem # 710
 

Rank the carbonyls A-D below in order of decreasing electrophilicity (reactivity with nucleophiles).

(1 = Most reactive).  Explain your reasoning.