All Practice Problems

Problem # 580

Draw all resonance forms for each species.

For the anion and cation species, used curved arrows. For the radical species, use hooks.

Problem # 581

Draw all products for the two reactions below.

The allylic alkene gives two products- the 1,2 product, and the 1,4 product. 

However, the benzylic alkene only gives the one product (analogous to the 1,2 product), instead of multiple products (like the 1,4 product, 1,6 product, and 1,8 product). Why is this the case?

Problem # 582
 

Rationalize the follwing pKa values. Explain your answer in terms of the stabilites of the conjugates bases of each acid.

Note: the lower the pKa, the stronger the acid.

Problem # 583

Pyrrole is an example of a heteroaromatic compound: it contains a heteroatom (atom that is not carbon or hydrogen, such as N, O, S, etc.), and is aromatic.

Because pyrrole is aromatic, we should be able to draw many resonance forms- usually as many resonance forms as sides (in this case, five sides, so five resonane forms).

Draw all resonance forms for pyrrole. (I've started you off.)

Problem # 584

Imidazole (shown below) has two nitrogen atoms, N-1 and N-3. Which nitrogen is more basic?

To answer this problem, draw the product after each nitrogen protonates, and compare their stabilities. Explain your reasoning.

Problem # 587

Use curved arrows to draw a mechanism for the generic electrophilic aromatic substitution (EAS) reaction below.

Problem # 588

Let's draw resonance forms to see why some groups are EDG or EWG. (I've started you off)

Where are the positive or negative charges placed in EDG/EWG? (ortho/meta/para) Why would this affect EAS reactions?

Note: EDG = electron donating group, EWG = electron withdrawing group

Problem # 589

 -OR is an EDG and an ortho-para director. Let's draw an EAS reaction's cyclohexadienyl cation intermediates to demonstrate why this is true. I've started you off.

What's good about ortho/para? What's bad about meta?

Problem # 590

-NO2 is an EWG and a meta director. Let's draw an EAS reaction's cyclohexadienyl cation intermediates to demonstrate why this is true. I've started you off.

What's good about meta? What's bad about ortho/para?

Problem # 591

Pyrrole undergoes eletrophilic aromatic substitution at C-2. Let's compare the resonance forms of EAS carbocation intermediates to see why this is the case. What do you think? Why C-2 and not C-3?